# Hydrology – Related Research ERDC - CRREL

Dr. Robert E. Davis Bert.Davis@us.army.mil





# Overview of Some Examples from Civil Works R&D

- CW Object-Oriented Tools for Interpolation of Meteorological Parameters for Hydrologic Modeling
- CW Distributed Snow Modeling
- CW Retrospective Spatial Analysis of Snow
- ERDC Military Program Terrestrial Sciences





# Object-Oriented Tools for Interpolation of Meteorological Parameters for Hydrologic Modeling

#### **Objectives**

- To produce gridded precipitation from of historic storm events with the storm track translated in space and time and for hypothetical design storms
- To produce gridded interpolation based on point measurements of air temperature and other relevant parameters
- To include orographic, elevation, and other terrain- and caserelated trends in the development of the gridded interpolations





#### **Tool Sets**







# Using PRISM as a Weighting Surface





## Using SSM/I as a Weighting Surface







# "Moving" Storms







## "Moving" Storms







#### **Benefits**

- Ability to produce distributed data for retrospective hydrologic models in a rational, consistent manner
  - Uses inverse distance weighting (IDW), with orographic, elevation and other known, or observed, trends in interpolations
  - Based on ESRI ArcGIS 8.2
- Interacts with HEC-DSS database, ASCII output, and ORACLE





#### **Distributed Snow Modeling**

#### **Objectives**

- To produce gridded snow processes, including accumulation and ablation from simple, historical data.
- To interface with HEC's gridded routing system
- To upate based on snow maps derived from remote sensing





#### **Distributed Snow Modeling**

- DSPM
- <u>Distributed Snow Process Model</u>
- The gridded snow modeling platform for HEC-HMS
- SSARR\_grid
  - The current snow model used by DSPM
- DSPM and HEC-HMS







#### **DSPM**

Using HEC-DSS database, DSPM runs every cell every time step, saves data for restart and runoff for routing.











#### **HEC-HMS**

- Single/continuous event model designed to estimate maximum discharge and flow volumes
- Gridded snowmelt
- Mod-Clark synthetic hydrograph

#### **FEATURES**

Stream network development, precipitation excess, time varying losses, runoff hydrograph, addition of baseflow, routing of stream flow, reservoir operation, combination of hydrographs, GIS





#### Mod-Clark Conceptual Model





Cell Outflow Hydrographs
Lagged by Travel Time





#### Retrospective Spatial Analysis of Snow

- Calculate basin and sub-basin statistics for a grid of snow water equivalent
  - total water volume (above a gage)
  - 3 and 7 day trends
- Compare statistics with historical data, generate list of closest matching dates
- Evaluate historical matches by calculating differences and/or viewing hydrograph





#### Start-up Requirements

- Database of historical snow water equivalent (SWE) grids and tabular statistics. Database organized by basin and snow data source.
- Grid of current SWE, used to compare with historical data





#### Calculate Statistics



- Define Basin GIS Layer
- Define input snow grids
- Choose whether saving to database
- Calculate volume and trend statistics
- Move on to comparison step…



#### Comparison of SWE Volume



- Comparison Methods
  - Basin:
    - Volume
    - 3 Day Trend
    - 7 Day Trend
  - Sub Basin: same options as Basin
- Search Types
  - Create New Set
  - Select from Results





#### View Hydrograph







#### ERDC Military R&D in Terrestrial Sciences

- Focus on scales of 10s to 100s of meters
- Develop novel approaches to predicting atmospheric effects on terrain (energy and mass transfer)
- Spatially distributed approach, usually implementing 1-dimensional models
- Span from basic research, through applied science to applied technology demonstrations





### ERDC Military R&D in Terrestrial Sciences

- Examples of past and continuing R&D
  - SNTHERM physics-based snow model
  - SOILTHERM SNTHERM coupled to physics-based soil
  - Snow mapping spectral unmixing
  - Soil moisture and strength modeling, FASST-C





# ERDC Military R&D in Terrestrial Sciences Process

- Basic research:
  - Annual process competes 1/3 of program as 2-3 year projects
  - Outsourcing up to ~40% based on partner and learning potential
- Applied research:
  - Annual program formulation of 1-5 year projects
  - Extra-mural funding usually through BAA



